5-6. Force \& Motion : A. Z. ALZAHRANI

1.

Force is a scalar quantity. Is it right?
Yes
No
2.

If the body moves with a constant acceleration, the net force is zero. Is it right?
Yes
No
3.

If the body moves with a constant velocity, the net force is zero. Is it right?
Yes
No

4.

Two forces F and P act on a body, the body will move in the direction of the force F
force P
net force

5.
 Static force on a body equals the net force if the body
 moves with a constant speed
 moves with a constant acceleration
 just starts its motion
 does not move

6.

The direction of kinetic friction force is always in the
direction of the greater force
direction of the net force
opposite direction of the net force
opposite direction of the normal force
7.

The reaction 'normal' force is always equivalent to the weight of the body. Is it right?
Yes
No

8.

The direction of the acceleration of moving system is in the direction of its velocity
its net force
its displacement
its weight

9.

If the summation of total forces acting on a body is zero, the body is in
static equilibrium
kinetic equilibrium
both are correct
none is correct
10.

Two blocks of masses $M=40.0 \mathrm{~kg}$ and m , are connected by a light string that passes over a massless pulley. If the tension in the string is $\mathbf{T}=\mathbf{3 0 0} \mathbf{N}$. Find the value of m . (Ignore friction)
24.8 kg

40 kg
30.5 kg
28.6 kg

11.

A 10 kg box is lowered with a downward acceleration of $1.8 \mathrm{~m} / \mathrm{s}^{\wedge} \mathbf{2}$ by means of a rope. The tension in the rope is
116 N
18 N
80 N
98 N
12.

Ali (super strong man) is pushing his car (1000 kg) with a uniform acceleration of $0.5 \mathrm{~m} / \mathrm{s}^{\wedge} 2$ by applying a force F at an angle 20 with the horizontal. if the coefficient of kinetic friction between the tyre and road is 0.65 , the magnitude of
13.

A car (1000 kg) is moving in a round-about with a constant speed of $40 \mathrm{~km} / \mathrm{h}$. If the radius of the round is 10 m , the force acting on the car is
980 N
12345 N
160000 N
200000 N
14.

A car orbits a circular road of diameter 40 m . If the acceleration is $20 \mathrm{~m} / \mathrm{s}^{\wedge} \mathbf{2}$, the speed of the car is
$28.28 \mathrm{~m} / \mathrm{s}$
$20 \mathrm{~m} / \mathrm{s}$
$15 \mathrm{~m} / \mathrm{s}$
$10 \mathrm{~m} / \mathrm{s}$
15.

A car takes 4 min to complete 6 turns around $25-\mathrm{m}$ radius road. The speed of the car is
$60 \mathrm{~km} / \mathrm{hr}$
$34 \mathrm{~km} / \mathrm{hr}$
$14 \mathrm{~km} / \mathrm{hr}$
$10 \mathrm{~km} / \mathrm{hr}$
16.

The direction of the acceleration due to a circular motion is
towards the centre of the circle
outwards the centre of the circle
tangent to the circle
none
17.

An 8-kg box is pulled over a frictionless floor with a horizontal force $\mathrm{F}=\mathbf{5 0} \mathbf{N}$. If the box starts its motion from the rest, its speed after 2 sec is
18.

An 8-kg box is pulled over a rough floor (kinetic friction coefficient is 0.25) with a horizontal force $\mathrm{F}=50 \mathrm{~N}$. If the box starts its motion from the rest, its speed after 2 sec is
$12.5 \mathrm{~m} / \mathrm{s}$
$10.3 \mathrm{~m} / \mathrm{s}$
$9.5 \mathrm{~m} / \mathrm{s}$
$7.6 \mathrm{~m} / \mathrm{s}$
19.

A 5-kg box is pulled up an inclined plane (angle $=30$) with a horizontal force $\mathrm{F}=50 \mathrm{~N}$. If the box moves with a constant speed, what is the coefficient of kinetic friction?
0.17
0.27
0.37
0.47
20.

An $80-\mathrm{kg}$ box is affected by a force of 500 N with an angle of 40 with the horizontal. If the box is started its motion from rest and covered $\mathbf{8} \mathbf{m}$ in $\mathbf{2 ~ s e c}$, what is the kinetic friction coefficient?
0.24
0.14
0.34
0.44

